一、大規(guī)模發(fā)展氫能的時機(jī)已經(jīng)來臨
1、氫能將在能源轉(zhuǎn)型中發(fā)揮關(guān)鍵作用
(1)發(fā)展氫能有助于應(yīng)對各種關(guān)鍵的能源挑戰(zhàn)。發(fā)展氫能可以為碳密集型部門(如交通運(yùn)輸、化工和鋼鐵等)提供極具發(fā)展?jié)摿Φ拿撎挤椒?。氫能還可以幫助改善空氣質(zhì)量并加強(qiáng)能源安全。此外,還可提高電力系統(tǒng)的靈活性。
(2)氫在供應(yīng)和使用方面具有多種途徑。氫是一種自由能源載體,可以由多種能源生產(chǎn)。
(3)發(fā)展氫能可以促進(jìn)對可再生能源的利用。氫能有潛力幫助解決太陽能光伏(PV)等可再生能源的波動性輸出問題。氫氣是存儲可再生能源的一種良好選擇,并且有望成為最經(jīng)濟(jì)的方式,可在幾天、幾周甚至幾個月內(nèi)存儲大量電力。氫氣和氫基燃料可以實(shí)現(xiàn)可再生能源的中長距離運(yùn)輸。
2、氫能正在全球范圍內(nèi)快速發(fā)展
(1)清潔氫能正迎來前所未有的政治和商業(yè)發(fā)展機(jī)遇。全球氫能相關(guān)政策和項(xiàng)目正在迅速增加,多個國家正部署可再生能源電解水制氫的示范項(xiàng)目和早期商業(yè)項(xiàng)目,并注重改進(jìn)電解槽技術(shù)和擴(kuò)大電解制氫產(chǎn)能,電解槽制氫項(xiàng)目規(guī)模呈指數(shù)級增長(圖1)。氫能商業(yè)應(yīng)用不斷增加,到2018年底,全球已安裝22.5萬臺家用燃料電池(其中日本占98%),建成380多座加氫站,燃料電池汽車保有量達(dá)11200輛,2018年銷售量約為4000輛。
圖1 2000-2023年全球新增電解制氫項(xiàng)目變化態(tài)勢(左軸:項(xiàng)目數(shù)量;右軸:新項(xiàng)目平均規(guī)模<兆瓦>)
(2)氫能應(yīng)用領(lǐng)域逐漸擴(kuò)大。由于可再生能源成本持續(xù)下降,以及全球減少溫室氣體排放的緊迫性增加,許多國家已開始采取行動利用氫能促進(jìn)脫碳,其應(yīng)用從汽車工業(yè)轉(zhuǎn)移到了難以脫碳的行業(yè),例如能源密集型工業(yè)、卡車、航空、船運(yùn)和供熱等。電力制燃料的新概念中,將電解產(chǎn)生的氫氣轉(zhuǎn)化為液體燃料成為氫能一項(xiàng)新的潛在應(yīng)用。氫氣還可用作制氨、鋼鐵和煉油原料,2018年全球直接還原煉鐵產(chǎn)量達(dá)到了1億噸,柴油和航空煤油需求的增加使煉油廠對用于加氫裂化的氫氣需求增加,對低硫柴油的需求也使煉油廠脫硫用氫氣的需求增加。
(3)將低碳化石燃料制氫作為過渡選擇?;剂现茪涫钱?dāng)前成本最低也是最主要的制氫方式,但其排放偏高。為化石燃料制氫配備碳捕集和封存(CCS)系統(tǒng),可實(shí)現(xiàn)低碳制氫(即“藍(lán)色氫氣”),可作為向無排放的可再生能源電力制氫(即“綠色氫氣”)過渡的方式。碳捕集效率有望達(dá)到85%-95%,然而目前一些項(xiàng)目的碳捕集效率并不理想,而且如果捕集的CO2被用于提高石油采收率(EOR)或生產(chǎn)石化產(chǎn)品或合成燃料,則最終仍會排放CO2。因此,實(shí)現(xiàn)大規(guī)模的藍(lán)色氫氣必須基于碳捕集率大大提高,并確保在有效的監(jiān)控、報告和驗(yàn)證系統(tǒng)下實(shí)現(xiàn)長期封存。
(4)可暫時利用天然氣基礎(chǔ)設(shè)施作為氫氣輸運(yùn)設(shè)施。輸送純氫氣的管道雖然技術(shù)上可行,但目前尚未大規(guī)模部署。世界某些地區(qū)已經(jīng)具備完善的天然氣輸送和分配基礎(chǔ)設(shè)施,按低比例將氫氣混入天然氣中,無需進(jìn)行重大技術(shù)改變和投入大量資金。此外,將氫氣合成為甲烷則可直接使用現(xiàn)有天然氣管道,但這增加了氫能利用的成本。此外,需要仔細(xì)評估終端設(shè)備(鍋爐、燃?xì)廨啓C(jī)和灶具)是否適應(yīng)氫氣和天然氣的混合。但可以確定,如果要使用純氫氣,則需對天然氣基礎(chǔ)設(shè)施和終端設(shè)備進(jìn)行重大升級。對于氫氣混合比例以及如何將現(xiàn)有天然氣基礎(chǔ)設(shè)施逐漸向100%輸送氫氣轉(zhuǎn)變,需各方一致確定共同目標(biāo)并設(shè)定清晰的路線圖,還需制定相應(yīng)的監(jiān)管法規(guī)和安全標(biāo)準(zhǔn)。
(5)綠色氫氣作為新商品的潛力。可以將綠色氫氣轉(zhuǎn)化為合成天然氣(使用生物能源燃燒產(chǎn)生或直接捕集空氣中的二氧化碳),并使用現(xiàn)有基礎(chǔ)設(shè)施將其運(yùn)送到市場。還可通過蒸汽甲烷重整配合CCS將天然氣轉(zhuǎn)化為低碳?xì)洌@為加拿大、伊朗、挪威、卡塔爾、俄羅斯聯(lián)邦和美國等天然氣生產(chǎn)國提供了前景。由于氫氣可以在邊遠(yuǎn)的沙漠地區(qū)以低成本生產(chǎn)并運(yùn)到市場,這為中東和北非等地區(qū)以及阿根廷、澳大利亞、智利和中國等國家提供了新的機(jī)遇。因此,向氫經(jīng)濟(jì)的轉(zhuǎn)變?yōu)槿缃褚蕾嚮剂铣隹谧鳛閲袷杖胫匾獊碓吹膰液偷貐^(qū)提供了新的經(jīng)濟(jì)前景,還可能為擁有豐富可再生能源資源的國家創(chuàng)造新的出口機(jī)會。但是,運(yùn)輸氫氣需要耗費(fèi)大量能量將氫氣液化,或者將氫氣轉(zhuǎn)化為其他載體,例如氨、甲醇和液態(tài)有機(jī)氫載體,這帶來了巨大的損失。如果可以在現(xiàn)場制氫并用于生產(chǎn)清潔產(chǎn)品,如氨、甲醇、直接還原煉鐵或通過電力轉(zhuǎn)換為燃料,則可以減少此類損失。
二、氫能與可再生能源的關(guān)系
1、氫能可推動可再生能源的加速部署
氫能大規(guī)模部署(或氫氣衍生的燃料和大宗商品)可以推動對可再生能源發(fā)電需求的顯著增長。IRENA估計(jì),2050年將有19艾焦氫氣由可再生能源電力制取,占終端能源消耗的5%和發(fā)電量的16%。而氫運(yùn)輸過程中會造成重大能量損失,可能會使氫能供應(yīng)的電力需求成倍增加。因此大規(guī)模部署氫氣將對電力行業(yè)產(chǎn)生重大影響,并且為可再生能源部署帶來更多機(jī)會
2、可通過制氫提高電力系統(tǒng)靈活性
電解槽可在幾分鐘甚至幾秒鐘內(nèi)增加或降低產(chǎn)量,新興的質(zhì)子交換膜電解槽比堿性電解槽響應(yīng)速度更快,因此可利用電解槽緩解電網(wǎng)擁堵,這有助于減少對波動性可再生能源的削減。同時,可再生能源電力可通過制氫來輸送。
3、氫氣可用于季節(jié)性存儲波動性可再生能源電力
到2050年,高比例風(fēng)能和太陽能并網(wǎng)將使儲能需求顯著增長,將可再生能源制氫與儲氫相結(jié)合,可以為能源系統(tǒng)提供長期的季節(jié)靈活性。儲氫可以以多種方式進(jìn)行,如高壓壓縮、低溫液化、固體儲氫、轉(zhuǎn)化為液體燃料或與天然氣混合儲存在天然氣基礎(chǔ)設(shè)施中。可再生能源電力季節(jié)性儲能需求將從2030年開始大幅增長,但氫能相關(guān)基礎(chǔ)設(shè)施和法規(guī)應(yīng)從當(dāng)前開始規(guī)劃。
三、清潔氫能的成本競爭力
可再生能源制氫成本與電解槽的資本支出、可再生能源電力的平準(zhǔn)化度電成本(LCOE)和電解槽的運(yùn)行率(即年運(yùn)行時間占比)密切相關(guān)。目前,堿性電解槽的資本支出通常為840美元/千瓦,許多地方公用事業(yè)規(guī)模太陽能光伏和陸上風(fēng)電的成本已達(dá)到2-3美分/千瓦時。電解槽的運(yùn)行率越高,單位氫氣的生產(chǎn)成本越低,應(yīng)確保其運(yùn)行率超過50%。當(dāng)前可再生能源制氫成本高于化石燃料(煤炭和天然氣)制氫成本,在最佳情況下,即采用最低成本的風(fēng)電(23美元/兆瓦時)和最低成本電解槽(200美元/千瓦,到2040年有望擴(kuò)大規(guī)模使用),綠色氫氣有望與藍(lán)色氫氣成本相當(dāng)(如圖2所示)。
圖2 各種制氫技術(shù)成本現(xiàn)狀(單位:美元/kg)
IRENA預(yù)測,到2050年,全球能源領(lǐng)域?qū)⑾?9艾焦“綠色氫氣”,意味著到2030年全球?qū)惭b約700吉瓦電解槽,到2050年則將達(dá)1700吉瓦??紤]技術(shù)的發(fā)展,到2050年電解槽成本降至375美元/千瓦,配備CCS的化石燃料制氫成本則基本保持不變。因此,利用低成本風(fēng)電和光伏電力制取的氫氣將在未來五年內(nèi)具備與化石燃料制氫相當(dāng)?shù)某杀靖偁幜?,尤其是與配備CCS的天然氣制氫相比。2030-2040年間,所有綠色氫氣的成本將低于藍(lán)色氫氣。到2035年,以可再生能源電力平均成本為基準(zhǔn)的制氫成本也開始具備與“藍(lán)色氫氣”的競爭力,碳價將進(jìn)一步提升綠色氫氣的競爭力,在某些地區(qū)綠色氫氣將在未來3-5年內(nèi)具備成本競爭力。
圖3 風(fēng)電和光伏發(fā)電制氫成本發(fā)展趨勢(單位:美元/kg)
四、關(guān)于擴(kuò)大氫能部署規(guī)模的政策建議
1、認(rèn)識氫能在能源系統(tǒng)轉(zhuǎn)型中的戰(zhàn)略作用
(1)將氫能作為關(guān)鍵環(huán)節(jié)納入能源系統(tǒng)轉(zhuǎn)型。盡管未來十年中還無法發(fā)揮氫能的作用,并且還需進(jìn)一步降低氫能成本,但此后氫能將迅速增長并在2050年前做出重大貢獻(xiàn)。各國政府和私營部門必須加強(qiáng)努力,以實(shí)現(xiàn)這一前景。
(2)將綠色氫氣作為長遠(yuǎn)的氫氣供應(yīng)方式。從長遠(yuǎn)來看,可再生能源制氫是唯一可持續(xù)的氫氣供應(yīng)方式。未來綠色氫氣將具備成本競爭力,應(yīng)關(guān)注降低可再生能源電力和電解槽成本,提高電解槽效率,以及電力系統(tǒng)集成。配備CCS的化石燃料制氫也可以起到過渡作用,特別是在具有低成本化石燃料儲量、良好碳封存條件以及可以向輸送氫氣過渡的天然氣管道系統(tǒng)的地區(qū)。
(3)將氫經(jīng)濟(jì)納入《巴黎氣候協(xié)定》的國家自主貢獻(xiàn)目標(biāo)(NDC)中。氣候目標(biāo)是向氫經(jīng)濟(jì)過渡的主要動力,因此對于能源系統(tǒng)而言,至關(guān)重要的是要在氣候承諾中體現(xiàn)這種潛力,對將綠色氫氣作為一種重要的溫室氣體減排方案的認(rèn)識尚有待提高。
(4)采取措施增加清潔氫氣在能源市場的應(yīng)用。例如,制定可持續(xù)制氫的強(qiáng)制性目標(biāo),強(qiáng)制性將氫氣與天然氣混合,或?qū)嵤┛稍偕茉粗噶钜源龠M(jìn)交通運(yùn)輸業(yè)中氫的使用等。
2、制定強(qiáng)制性政策助推清潔氫氣普及利用
(1)制定無碳排放供氫的認(rèn)證系統(tǒng)和規(guī)定。確保未來的氫氣供應(yīng)與氣候目標(biāo)相一致至關(guān)重要,特別是對于遙遠(yuǎn)地方運(yùn)輸?shù)臍錃?,則需要確定其來源。
(2)記錄并交流國際最佳實(shí)踐,確保信息共享。氫能領(lǐng)域處于迅速發(fā)展階段,技術(shù)、監(jiān)管框架和標(biāo)準(zhǔn)都需要進(jìn)一步發(fā)展。
(3)確保高效的氫氣供應(yīng)和使用。氫氣的揮發(fā)性意味著轉(zhuǎn)化、運(yùn)輸和存儲過程中會造成明顯的能耗損失。需要進(jìn)行技術(shù)改進(jìn)以確保較高的整體效率。
3、注重氫氣供應(yīng)基礎(chǔ)設(shè)施建設(shè)和切實(shí)可行的過渡途徑探索
(1)評估天然氣管道系統(tǒng)材料及終端用氣設(shè)備,以更好地了解將其用于氫氣運(yùn)輸?shù)臐摿?。各種研究表明,將天然氣管道系統(tǒng)作為過渡是可行的,但只有實(shí)踐才能證明技術(shù)和經(jīng)濟(jì)可行性。
(2)進(jìn)行技術(shù)協(xié)作,并協(xié)調(diào)法規(guī)、規(guī)范和標(biāo)準(zhǔn)。天然氣管道系統(tǒng)、地下存儲和燃燒設(shè)備中氣體混合物的使用標(biāo)準(zhǔn)通常是以天然氣中氫氣含量很少為標(biāo)準(zhǔn)設(shè)計(jì)的,因此需進(jìn)行修訂。國家標(biāo)準(zhǔn)化機(jī)構(gòu)和國際組織在此過程中可以發(fā)揮關(guān)鍵作用。在標(biāo)準(zhǔn)變更方面發(fā)展并取得共識是一個漫長的過程。因此,現(xiàn)在需要采取緊急行動,以避免成為中期行動的障礙。
(3)鼓勵發(fā)展氫能基礎(chǔ)設(shè)施,同時通過研發(fā)和示范以降低綠色氫氣的供應(yīng)成本。盡管綠色氫氣在技術(shù)上是可行的,但在未來幾十年中將需要進(jìn)行大規(guī)模推廣,以確保氫能在能源轉(zhuǎn)型中發(fā)揮重要作用。
4、開拓新的氫能利用市場
(1)將氫能應(yīng)用于碳密集型行業(yè)。對于卡車運(yùn)輸而言,低成本氫氣的可用性是一個關(guān)鍵因素。在工業(yè)領(lǐng)域,基于綠色氫氣的氨生產(chǎn)在技術(shù)上是可行的。鋼鐵生產(chǎn)需要開發(fā)更多工藝,可極大降低碳排放。鐵路、船運(yùn)和航空領(lǐng)域也極具應(yīng)用前景。新的氫商品貿(mào)易可以使氫能不僅圍繞能源轉(zhuǎn)型發(fā)揮作用,還可以為當(dāng)今的主要石油和天然氣生產(chǎn)國創(chuàng)造經(jīng)濟(jì)前景。
(2)開發(fā)航空、船運(yùn)、化學(xué)品和石化行業(yè)的可再生能源電力轉(zhuǎn)換制化學(xué)品和燃料技術(shù)(Power-to-X)。盡管目前此類技術(shù)的成本很高,但存在巨大的降低成本潛力,能夠?yàn)樘济芗偷男袠I(yè)提供技術(shù)可行且成本低廉的解決方案。其關(guān)鍵是具有可長期使用的可持續(xù)CO2來源,例如生物質(zhì)燃燒或直接空氣捕獲CO2。
(3)將氫能作為向未來能源系統(tǒng)轉(zhuǎn)型期間推動部署更多波動性可再生能源的關(guān)鍵因素。氫能具備增強(qiáng)系統(tǒng)靈活性、提升電力需求和可再生能源份額等優(yōu)點(diǎn),因此應(yīng)被視為能源轉(zhuǎn)型的重要解決方案。
(4)在能夠?qū)錃馍a(chǎn)和氫氣利用結(jié)合的地區(qū)啟動示范項(xiàng)目。例如,煉鋼和合成氨以及合成燃料項(xiàng)目,從而消除氫氣運(yùn)輸?shù)某杀尽?/p>